关于索洛模型储蓄率问题

什么是索洛模型?
又称作新古典经济增长模型、外生经济增长模型,是在新古典经济学框架内的经济增长模型。
[编辑本段]索洛模型的假设
该模型假设储蓄全部转化为投资,即储蓄-投资转化率假设为1; 该模型假设投资的边际收益率递减,即投资的规模收益是常数; 该模型修正了哈罗德-多马模型的生产技术假设,采用了资本和劳动可替代的新古典科布-道格拉斯生产函数,从而解决了哈罗德-多马模型中经济增长率与人口增长率不能自发相等的问题。 因为在科布-道格拉斯生产函数中,劳动数量既定,随资本存量的增加,资本的边际收益递减规律确保经济增长稳定在一个特定值上。该模型没有投资的预期,因此回避了有保证的经济增长率与实际经济增长率之间的不稳定,就此可得出结论:经济稳定增长。
是Solow于1956年首次创立的,用来说明储蓄、资本积累和增长之间的关系。自建立以来,这一模型一直是分析以上三个变量关系的主要理论框架。
索洛增长模型的假设{①生产和供给方面:Y=F(K,L),劳动和资本可以平滑替代,规模报酬不变,稻田条件(公式),在生产函数两边同除以L——y=F(k,1)=f(k),所有符号均代表人均产量;需求方面:y=c+i,c=(1-s)y,y=(1-s)y+i,i=sy=s f(k)},资本存量的变化{△k=i-δk= s f(k)-δk},投资、折旧和资本存量的“稳态”(图3.4),储蓄率对稳态的影响,资本积累能提高产出水平,但是无法实现经济持续增长,“黄金律水平”{c*=f(k*)-δk*,条件:MPK=δ},一个经济肯定会自动收敛于一个稳定状态,但并不会自动收敛到一个“黄金律水平”的稳定状态
在长期,一个经济的储蓄率决定其资本存量规模,从而决定其产出水平。储蓄率越高,资本存量就越多,产出也越多。储蓄率的提高导致一个迅速增长的时期,但最终当达到新的稳定状态时增长减缓。因此,虽然高储蓄率产生了稳定状态的高产出水平,但其本身不能造成持续的经济增长。
是稳定状态消费最大化的资本水平被称为黄金律水平。如果一个经济的资本大于黄金律稳定状态,那么,减少储蓄就会增加所有事点上的消费。相反,如果经济的资本小于黄金律稳定状态,那么,达到黄金律就要求增加投资,从而减少现在一代人的消费。
一个经济的人口增长率是决定生活水平的另一个长期因素。人口增长率越高,人均产出水平越低。
这其中还必须考虑到对资源H的消耗速率(在多布恩什的宏观经济学中有详解)
储蓄率只能提高资本存量的水平,而不能影响人均资本增长的速度,影响资本增长速度的是“人口增长率、资源增长消耗率、资本的折旧率、技术的进步率”其实索洛模型在运用数学公式推导的时候还存在一些瑕疵。

新古典经济增长模型是由谁提出的

(重定向自新古典经济增长模型)
索洛经济增长模型(Solow Growth Model)

索洛经济增长模型概述
索洛经济增长模型(Solow Growth Model)是罗伯特·索洛所提出的发展经济学中著名的模型,又称作新古典经济增长模型、外生经济增长模型,是在新古典经济学框架内的经济增长模型。

新古典主义经济学 索洛

正当1987年世界股票市场暴跌之时,瑞典皇家科学院宣布该年度诺贝尔经济学奖授于一直与里根政府的经济政策唱反调、主张政府必须有效地干预市场经济的美国麻省理工学院教授罗伯特·索洛(Robert M·Solow)。许多经济学界人士认为,纽约股票市场的这场大动荡,恰恰证实了索洛坚持的理论,使他的经济增长理论成为当今世界热门研究课题之一。可是,他的这一理论———表明各种不同因素是如何对经济增长和发展产生影响的长期经济增长模型,早在30年前他在一篇题为《对经济增长理论的贡献》的论文中就提出来了。[1]

索洛模型变量

外生变量:储蓄率、人口增长率、技术进步率
内生变量:投资

索洛模型的数学公式

模型的基本假定[1]
索洛在构建他的经济增长模型时,既汲取了哈罗德—多马友段岁经济增长模型的优点,又屏弃了后者的那些令人疑惑的假设条件。

索洛认为,哈罗德—多马模型只不过是一种长期经济体系中的“刀刃平衡”,其中,储蓄率、资本—产出比率和劳动力增长率是主要参数。这些参数值若稍有偏离,其结果不是增加失业,就是导致长期通货彭胀。用哈罗德的话来说,这种“刀刃平衡”是以保证增长率(用Gw表示,它取决于家庭和企业的储蓄与投资的习惯)和自然增长率(用Gn表示,在技术不变的情况下,它取决于劳动力的增加)的相等来支撑的。

索洛指出,Gw和Gn之间的这种脆弱的平衡,关健在于哈罗德—多马模型的劳动力不能取代资本,生产中的劳动力与资本比例是固定的假设。倘若放弃这种假设,Gw和Gn之间的“刀刃平衡”也就随之消失。基于这一思路,索洛建立了一种没有固定生产比例假设的长期增长模型。

该模型的假设条件包括:

1.只生产一种产品,此产品既可用于消费也可用于投资。

2.产出是一种资本折旧后的净产出,即该模型考虑资本折旧。

3.规模报酬不变,即生产函数是一阶齐次关系式。

4.两种生产要素(劳动力和资本)按其边际实物生产力付酬。

5.价格和工资是可变的。

6.劳动力永燃辩远是充分就业的。

7.劳动力与资本可相互替代。

8.存在技术进步。

在这些条件下,索洛建立的模型向人们显示出:在技术系数可变的情况下,人均资本量好睁具有随时间推移而向均衡状态的人均资本量自行调整的倾向(图一,k1与k2逐渐趋向ko),即,当人均资本量大于其均衡状态时(k2),人均资本量会有逐渐减小的趋势,即资本的增加就会比劳动力的增加慢得多;反之,亦然。索洛是人均资本量入手集中分析均衡(即稳定状态)增长路径的。

模型的基本框架[1]
索洛把经济中的全部产出看成仅仅是一种产品的产出。其每年生产量用Y(t)表示,代表社会的实际收入,其中一部分被消费掉,其余部分用于储蓄和投资。用于储蓄的占总产品比例s固定不变,即储蓄量为sY(t)。K(t)是资本存量。这种资本存量的增加量就是净投资,即dk/dt或因此,索洛模型的基本方程式可以写成:

(1)

因产出是用资本和劳动力生产的,技术能力可用生产函数来反应:

Y=F(K,L) (2)且该函数满足假设规模报酬不变。

把(2)式代入(1)式,有:

(3)

其中,L代表劳动力。

由于人口的增长是外生变量,劳动力以一个不变增长率n增加。因此:

(4)

索洛把n看成是在没有技术进步情况下的哈罗德的自然增长率(Gn),把L(t)看成是在t时期可利用的劳动力供给。(4)式的右边表明劳动力从0期到t期的综合增长率。我们还可以把(4)式看作是劳动力的供给曲线,“它说的是以指数增长的劳动力完全无弹性地得到就业。劳动力供给曲线是一条纵向线,它随着劳动力按(4)式的增长而向右移动。于是,调整实际工资率以使全部可利用的劳动力得到雇佣,而边际生产力等式决定着这种实际上得到控制的工资率”。

把(4)式代入(3)式,索洛给出下列基本方程式:

(5)

他把这个方程式作为在全部可利用的劳动力得到充分利用的情况下决定必须遵循的资本积累的时间轨迹方程式。资本存量和劳动力的时间轨迹一经确知,相应的实际产出的时间轨迹就可根据生产函数计算出来。实际工资率的时间轨迹可用边际生产力等式确定,即(6)

索洛把经济增长过程概括为:“在任何时候,可利用的劳动力供给都由等式(4)给定,而且可利用的资本存量也是一个已知数。既然生产要素的实际报酬可调整而使劳动力和资本得以充分利用,我们就能利用生产函数等式(2)求出当期产出量。于是,储蓄倾向告诉我们多少净产出将用于储蓄和投资,从而我们得知当期的资本净积累,再加之已积累的存货,这就为下一期提供了可利用的资本”。

可能的增长类型[1]
上一节的方程式(5)有助于研究资本—劳动力比率(K/L)的行为。为此,索洛引入了一个新的变量r,用来代表资本—劳动力比率,即人均资本量。因此,或K=rL。把方程式(4)代入该表达式中,得到:

(7)

把方程式(7)对时间微分,得到资本存量变化率的方程式:

(8)

把方程式(5)代入方程式(8)中,得到:

(9)

方程式(9)表明了,在假定劳动力是充分就业的且每一时期的储蓄是充分就业产出的一个比例s情况下,资本是如何持续增长的。

规模收益不变的假定,意味着生产函数是一阶齐次函数。用来除方程式(9),得到:

(10)

方程式(10)的两边同时减去nr,得到:

最后,把资本—劳动比率写成r,得到索洛的基本方程式:

(11)

其中,r——人均资本存量(K/L)

n——劳动力增长率率()

F(r,1)——人均产出函数或人均收入函数 sF(r,1)——指人均产出中用于储蓄或投资的产品量 方程式(11)表明,实际用于储蓄的产品量〔sF(r,1)〕与均衡状态所需要达到的产品量nr之间的差距,该方程式可以用来找到一条总能达到稳定状态且与劳动力增长率相一致的资本积累路径。

以基本方程式(11)为基础,索洛用图示说明了可能的增长类型(见图—1)

在图—1中,横轴为人均资本量r,纵轴为人均产出量y,(/L),通过原点的直线是函数nr,另一条曲线为y=sF(r,1)。

图—1 可能的增长类型。

代表函数sF(r,1)这样画出来的图示反映出资本的边际生产力递减。这两条曲线在nr=sF(r,1),即处相交,此时横坐标为r'当时,人均资本量不变,而且人均资本量增长率与劳动力增长率相等且同为n。资本—劳动力的比率r′一旦确定就不变了,资本和劳动力按该比例增加。倘若规模报酬不变,实际产出也会以相同的相对比率(n)增加,而且每个劳动力的产出将不变。

如若r′与实际r不一致,资本—劳动力比率情况将如何?若r>r′,则nr>sF(r,1),r将降低以接近于r′;相反,若r<r′,nr<sF(r,1),r将提高以接近于r′。因此,均衡值r′是稳定的。“不管人均资本量的初始值如何,该体系将以自然比率向平衡增长发展……若初始资本存量低于均衡值,资本和产出将以快于劳动力增长的速度而增加,直至接近均衡值。若该初始比率高于均衡值,资本和产出将以比劳动力增长速度更慢的速度增加。产出的增长总是处于劳动力和资本的增长速度之间”。

图—2 生产力曲线。

但是,图—1所表现出来的那种很强的稳定性并不是绝对的,这取决于生产力曲线sF(r,1)的形状。在图—2中,生产力曲线sF(r,1)在r1、r2和r3三处与nr曲线相交。r1和r3是稳定的,而r2则不稳定。“该体系不是按资本—劳动力比率r1进行平衡增长,就是按r3进行平衡增长,这取决于最初可观察到的资本—劳动比率。在任何一种情况下,劳动力供给、资本存量和实际产出将以比率n渐进增长;但在r1左右,其资本量要比在r3左右为少,故前者的人均产出水平比后者的人均产出水平低。那么,对于在O和r2之间的初始比率,其相应的平衡增长均衡是r1,而对于大于r2的任何初始比率,其相应的平衡增长均衡就是r3比率r2本身就是一种均衡的但不稳定的增长率,任何偶然的扰动在一定时期内都会被夸大。如此画出的图—2使得生产在没有资本的情况下也要进行”。

索洛对他的长期增长模型作了这样的总结:“当生产在通常的比例变动和报酬不变的新古典条件下进行时,自然增长率与有保证的增长率之间没有明确的抵触是可能的。也许不会有……任何‘刀刃’。该体系能够调整任何既定的劳动力增长率,最终达到按比例增加的稳定状态”,即:

索洛增长模型表明的基本含义[2]
索洛增长模型表明的基本含义是:人均资本拥有量的变化率ḱ取决于人均收入储蓄率sf(k)和按照既定的资本劳动比配备每一新增长人口所需资本量nk之间的差额。

索洛增长模型sf(k)=ḱ+nk还表明另一个含义。一个社会中的人均储蓄率sf(k)有两个用途:

一是用于人均资本拥有量的增加量ḱ,即为每个人配备更多的资本装备,这被称作“资本的深化”;

二是用于为每一新增人口提供平均的资本装备nk,这被称作“资本的广化”。换句话说,经济中的全部储蓄转化为投资后,一部分用于提高人均资本拥有量(资本的深化),另一部分则用于为新增人

240
标签
显示验证码
没有账号?注册  忘记密码?